
Texts in Medical History National Library of Medicine Spring 

Transformations: Word Embedding Models

What do they do? Word embeddingmodels try to arrange every word in a text in a spatial grid so that similar
words (based on their context) are close together. is is called turning a word into a “vector,” or “embedding it
in a vector space.” e grid can’t be directly envisioned, since it is dozens of dimensions wide; but you can use
to find synonyms, construct groups of related words, or see how language works in a text.

What’s so great about them? ere’s something appealing post-linguistic-turn about the idea of words as
having no meanings other than their relationships to each other.

Plus, the new versions (see below) can work incredibly well. ey don’t just let you find synonyms, but also
allow for what looks from a distance like simple reasoning. e modern field was reignited when someone at
Google came up with a model that lets you do SAT-style analogies; take the vector for “king”, subtract “man”
and add “woman,” and it takes you to the vector for “queen.”

Are there alternative implementations? Yes. Latent Semantic Analysis (LSA) is the oldest and has the most
extensive literature pitched at humanists. It uses co-occurrence statistics by documents, but can’t work well on
very large document collections. More recently, the Google algorithm described above, word2vec, took the
world by storm by running faster with higher resolution. ere are a number of algorithms with claims to being
slightly better in various ways. Still, word2vec is the logical place to start.

What choices do I have to make? In the modern algorithms, the word size window is the most important.
is tells the algorithm how close together words have to be for the algorithm to count them as “similar.” Short
windows tend to give you In LSA, there’s isn’t a window. Instead, the document size is a critically important
choice. Smaller documents made the algorithm more effective but harder to run.

As in topicmodeling, you have to decidewhat constitutes a word. Lowercasing and stripping punctuation ahead
of time is generally useful; unlike the topic modeling programs, the word embedding programs usually don’t
do this for you.

e number of dimensions isn’t especially critical. Havingmore is generally better, but takes upmore hard drive
space and processing time. You should use as many as you can–somewhere between  and . Training can
take a few hours.

Other than that, the defaults are fine.

What soware should I use? ere’s not much yet. word2vec was released as open-source code you can
compile at home; there are some instructions on the web. In Python, the gensim toolkit has a good implemen-
tation with some nice bells and whistles. In R, I’ve written a package to help train and explore models using the
wordvec codebase without the command line.




	Transformations: Word Embedding Models

