
HIST 7370 Northeastern University Fall 2017

Regular Expressions

Regular Expressions

Anyone working with text files will often find regular expressions to be very helpful. In most digital humanities
projects, you’ll spend as much time cleaning data as you’ll spend actually analyzing it. Unless you want to clean
data entirely by hand, you’ll want to use some basic regular expressions to parse through them.

If you’re working on a website, too, knowing your way around regular expressions can frequently save you
enormous amounts of time; rather than tediously replace the same pattern over and over again, you can

Regular expressions (or “regexes”) are, to put it generally, a vocabulary for abstractly describing text. Any reader
knows that “1785-1914” is a range of dates, or that “bwilliams@nbc.com” is an e-mail address. If you have a
document full of date ranges, or e-mail addresses, or any other sort of text, you probably have some structured
entities just like this. But a computer needs to be told what a “date range” or an “e-mail address” is. Regular
expressions offer a way to define them.

A year range might be defined, say, as [0-9]+-[0-9]+.

Valid e-mail addresses aremore complicated: youmight search for themusing the expression: ˆ([A-Z0-9._%+-]+)@([A-Z0-9.-]+)\.([A-Z]{2,4})$.
Obviously that’s longer than any single e-mail address. But you can understand what’s going on inside it, and
why you might want to.

Where to use regexes:

Regexes are embedded in all sorts of computer software. The easiest place to use them is inside a text area. Many
text editors contain them, but Microsoft Word does not include the full range. I’ve asked you to instal Atom for
this class; If you have a Mac, the program TextWrangler offers one easy-to-use environment with regexes built
in. For Windows, Notepad-plus-plus does much the same thing. These are programs well worth installing on
your computer–many tedious editing tasks can be sidestepped by reprogramming them as a regular expression.

If you want to unlock the full power of regular expressions, you can find them in most modern computer
languages.

sed has the classical set of regular expressions, and is easily invoked through the command line on a Mac or
Linux machine. (Don’t worry if you don’t know what that means; we’re trying to push the envelope here.)

echo "hi" | sed 's/h/i/g;'

If you ever use the command line, the perl one-liner syntax is well worth knowing as well: try to figure out what
the following will do before pasting it into a terminal.

echo "Some letters look like numbers" | perl -pe 's/o/0/g; s/l/1/g; s/e/3/g'

Basic search-replace operations

Basic Operators:

*, ? and +

1

http://www.barebones.com/products/textwrangler/
http://notepad-plus-plus.org/

HIST 7370 Northeastern University Fall 2017

• *matches the preceding character **any number of times,* including no times at all.
• +matches the preceding expression at least one time.
• ? matches the preceding expression exactly zero or one times.

Ranges of single characters: [] You can use brackets to indicate a range of characters exactly once. Suppose
you are searching through the Schmidt family records, but learn that 18th century families often spelled the
name “Schmitt.” The regular expression Schmi[td]t would match either spelling.

Any bracket, no matter how many letters are in it, matches exactly one character.

Negating characters You can also match not a character. The regex [aeiou] matches any vowel; the regex
[ˆaeoiu]matches any word that is not a vowel.

Groups: () Parenthesis let you group a set of characters together. That is useful with replacements, de-
scribed below: but it also lets you apply the operators above to groups of words.

Suppose you have a document full of references to JohnQuincy Adams, but that it sometimes calls him “JohnQ.
Adams” and sometimes “John Quincy Adams.” If you want to standardize, you want to make the whole “uincy”
field optional. You can do this by searching for the following regex:

John Q(uincy)?.? Adams

Note that you need the period too, or else it won’t match for John Q. Adams.

These groups can be matched in the future: see below (“matching groups”)

The or search: | The vertical bar (or pipe) character is above the return key on most keyboards. It lets you
do an or search. A regex will match your search if it returns either of the things to the left or right.

The regex Clinton|Bushmatches either the names “Clinton” or “Bush.”

Often you’ll want to combine it with a group, to match a longer string. The “or” term is only as big as the
parenthesis it’s inside; so, President Clinton|Bush would match “Bush” or “President Clinton”, while
President (Clinton|Bush) would match “President Clinton” or “President Bush.”

The universal match: . One last special character is the period, which matches any single character. The
regex John Q. Adams would actually match John QB Adams, John Q# Adams, and anything after the Q.
(For how to actually match a real period, see “escaping,” below.)

Theuniversalistmatch: .* Themost capacious regex of all is.*which tells the parser tomatch “any character
any number of times.” Thatmight seem useless, but is actually used all the time. For instance, love.*cholera
will match any line that contains the word love and the word cholera, regardless of how far apart they are.

Repeated Groups {} For most cases, *, +, or ? will work to capture an expression. But if you want to specify
a particular number of times, you can use curly brackets. So to find Santa Claus, you could type (Ho){3} and
match HoHoHo. The brackets match whatever thing is immediately before them. Ho{3}will not match HoHoHo,
but will match Hooo.

2

HIST 7370 Northeastern University Fall 2017

Replacements

Thesyntax for replacing a regexwill change from language to language, but the easiest substitution is to replace a
regex by another one. Any substituting regex has two primary parts; the field to bematched, and its substitution.
You can have any regular expression components in the first part; the second will usually just be a sequence of
letters, but can also use numbered matching groups (see below).

Escape characters

Escaping special characters

Sometimes, of course, you’ll actually want to search for a bracket, parenthesis, or other special character. To
describe a literal bracket in a regex, you use the so-called “escape character”: the backslash, \. “Escaping” a
character means putting a backslash in front of it, so that it takes a special meaning. To represent a literal
period, for example, you’d have to specify the regex \.. The backslash is hardly ever used in normal writing, so
it makes a safe choice for this: but you can always “escape” even the backslash itself, by prefacing it with another
backslash: \\

Matching Groups

In addition to escaping those special characters, regexes also allow you to create other special characters.

The most powerful ones, and the ones best worth knowing, take their meaning from the context of the regular
expression.

When you use parentheses in a regex, it doesn’t only create a group for matching: it also sets aside that group
for future reference. Those can be accessed by escaping a digit from one to ten.

That means that you can replace a string contextually.

If you wanted to replace every occurrence of “ba” in a text with “ab,” say, you could simply run the following
substitution:

replace ba with ab

But what if you actually want to swap any two letters?

The regex

replace (b)(a) with \2\1

does the same thing, but more generally. You could put anything into the parentheses.

Say you wanted to reformat a list of names from Firstname Lastname format to Lastname, Firstname.

The regex

• replace (.*) (.*) with \2, \1/

matches any characters, followed by a space, followed by any characters, and replaces them with the second
group and the first group. This would, for instance, replace John Adams with Adams, John.

3

HIST 7370 Northeastern University Fall 2017

Creating other special characters.

Other important special characters come from prefacing letters.

• \n: a “newline”
• \t: a tab

In addition, other special characters will match a whole range of letters. Usually, there would be a way to write
these as a regular expression on their own: but it can be very helpful to have a more succinct version. Some of
the most useful are:

• \w: Any word character. (The same as [A-Za-z]).
• \W: Any non-word character. (The same as [ˆA-Z-a-z])
• \d: Any numeric (digit) character.
• \D: Any non-numeric (digit) character.

(If you are working in non-English languages, there are unicode extensions that work off the special character
\p (or \P to designate the inverse of a selection). \p{L} matches any unicode letter, for example. See the
unicode web site for more on this.)

4

http://www.unicode.org/reports/tr18/
http://www.unicode.org/reports/tr18/

	Regular Expressions
	Where to use regexes:
	Basic search-replace operations
	Basic Operators:
	Replacements

	Escape characters
	Escaping special characters
	Matching Groups
	Creating other special characters.

